### Sixth Semester B.Sc. Degree Examination, April/May 2019

(CBCS Scheme)

## Mathematics Mauleva SI

# Paper 6.1 - COMPLEX ANALYSIS AND NUMERICAL METHODS

Time: 3 Hours] [Max. Marks: 90

Instructions to Candidates: Answers ALL the questions.

PART – A

I. Answer any SIX of the following.

 $(6 \times 2 = 12)$ 

- 1. Find the real and imaginary part of  $e^{\frac{i\pi}{2}}$ .
- 2. Show that  $u = e^x \sin y$  is a harmonic function.
- 3. Define power series.
- 4. Evaluate  $\int_{(0,1)}^{(2,5)} ((3x+y)dx + (2y-x)dy)$  along the curve  $y = x^2 + 1$ .
- 5. Evaluate  $\int_{C} \frac{e^{z}}{(z-1)} dz$  where c:|z|=2.
- 6. Prove that  $\Delta = E 1$ .
- 7. Evaluate  $\Delta^{3}[(1+2x)(1+4x)(1+6x)]$  by taking h = 1.

PART - B

II. Answer any SIX of the following:

 $(6 \times 3 = 18)$ 

- 8. Show that  $|z|^2 = 4 \operatorname{Re}(z+2)$  represents a circle. Find its centre and radius.
- 9. Evaluate  $\bigcup_{\substack{\frac{i\pi}{2} \\ z \to e^{\frac{i\pi}{4}}}} \left( \frac{z^2}{z^4 + z^2 + 1} \right).$
- 10. Construct the analytic function where real part is  $e^x \sin y$ .

## Q.P. Code - 42633

- 11. Evaluate  $\int \frac{e^{2z}}{(z-2)^2} dz$  where C:|z|=3.
- Evaluate  $\int [(x+2y)dx + (4-2x)dy]$  around the ellipse  $x = 4\cos\theta$ ,  $y = 3\sin\theta$  where  $0 \le \theta \le 2\pi$ .
- Construct a difference table for  $f(x) = x^2 + x + 1$  for the values x = 0(1)4.
- Using Simpson's 1/3 rule evaluate  $\int f(x) dx$ . Given that

|      |    |    |    | XXX | waith |
|------|----|----|----|-----|-------|
| х    | 1  | 2  | 3  | 4   | 5     |
| f(x) | 13 | 50 | 70 | 80  | 100   |

#### PART C

III. Answer any **FOUR** of the following:

- $(4 \times 5 = 20)$
- State and prove necessary condition for the function f(z) to be analytic. 15.
- Show that  $\arg\left(\frac{z-1}{z+2}\right) = \frac{\pi}{3}$  represents a circle. Find the centre and radius.
- Show that  $f(z) = \sin z$  is analytic and also find its derivative.
- Find the orthogonal trajectories of family of curves  $x^2 y^2 + x = G$ .
- 19. If f(z) = u + iv is analytic where u and v are harmonic function then prove that  $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left| \operatorname{Re} f(z) \right|^2 = 2 |f'(z)|^2.$
- Answer any **FOUR** of the following:  $(4 \times 5 = 20)$ IV.

- Evaluate  $\int_{0}^{1+i} (x^2 iz)dz$  along y = x and  $y = x^2$ .
- State and prove Cauchy's integral theorem. 21.

- 22. Evaluate  $\int_{C} \frac{\sin(\pi z^2) + \cos(\pi z^2)}{(z-1)(z-2)} dz$  where c:|z|=3.
- 23. Evaluate  $\int_{C} \frac{\sin^2 z}{\left(z \frac{\pi}{6}\right)^3} dz \text{ where } c: |z| = 1.$
- 24. State and prove Liouville's theorem.
- V. Answer any FOUR of the following:

 $(4 \times 5 = 20)$ 

25. Use the method of separation of symbols to prove

$$u_0 - u_1 + u_2 - u_3 + \dots = \frac{1}{2}u_0 - \frac{1}{4}\Delta u_0 + \frac{1}{8}\Delta^2 u_0 - \frac{1}{16}\Delta^3 u_0 + \dots$$

26. From the following table find the number of students who obtained < 45 marks.

| Marks              | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
|--------------------|-------|-------|-------|-------|-------|
| Number of Students | 31    | 42    | 51    | 35    | 31    |

27. Normal weight of baby during the 1st eight months of life.

| Age in Months     | 0 | 2  | 5  | 8  |
|-------------------|---|----|----|----|
| Weight in months: | 6 | 10 | 12 | 16 |

Estimate the weight of the baby at the age of 7 months using Lagrange's interpolation formula.

- 28. Evaluate  $\int_{-\pi/2}^{\pi/2} \cos x \, dx$  taking '6' subintervals by Weddle's rule.
- 29. Find f'(6) and f''(6) from the following table:

| x    | 2 | 4  | 6  | 8  | 10 |
|------|---|----|----|----|----|
| f(x) | 4 | 12 | 19 | 52 | 84 |